在本文中,我们介绍Bayesldm,这是一个用于贝叶斯纵向数据建模的系统,该系统由高级建模语言组成,具有针对复杂的多变量时间序列数据建模的特定功能,并与编译器相结合,可以生成优化的概率程序代码,以在指定模型中执行指定的推理。 Bayesldm支持贝叶斯网络模型的建模,其特定关注动态贝叶斯网络(DBN)的高效,声明性规范。 Bayesldm编译器将模型规范与可用数据和输出代码相结合,用于执行贝叶斯推断,以同时处理丢失的数据,同时处理未知模型参数。这些功能有可能通过抽象产生计算有效的概率推断代码的过程来显着加速域中的迭代建模工作流,这些迭代建模工作流程涉及复杂纵向数据的分析。我们描述了Bayesldm系统组件,评估表示和推理优化的效率,并提供了该系统在分析异质和部分观察到的移动健康数据的应用示例。
translated by 谷歌翻译
The problem of detecting the Out-of-Distribution (OoD) inputs is of paramount importance for Deep Neural Networks. It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable and often tend to make over-confident predictions for OoDs, assigning to them a higher density than to the in-distribution data. This over-confidence in a single model can be potentially mitigated with Bayesian inference over the model parameters that take into account epistemic uncertainty. This paper investigates three approaches to Bayesian inference: stochastic gradient Markov chain Monte Carlo, Bayes by Backpropagation, and Stochastic Weight Averaging-Gaussian. The inference is implemented over the weights of the deep neural networks that parameterize the likelihood of the Variational Autoencoder. We empirically evaluate the approaches against several benchmarks that are often used for OoD detection: estimation of the marginal likelihood utilizing sampled model ensemble, typicality test, disagreement score, and Watanabe-Akaike Information Criterion. Finally, we introduce two simple scores that demonstrate the state-of-the-art performance.
translated by 谷歌翻译
In this paper, we propose a new neural network architecture based on the H2 matrix. Even though networks with H2-inspired architecture already exist, and our approach is designed to reduce memory costs and improve performance by taking into account the sparsity template of the H2 matrix. In numerical comparison with alternative neural networks, including the known H2-based ones, our architecture showed itself as beneficial in terms of performance, memory, and scalability.
translated by 谷歌翻译
t-SNE remains one of the most popular embedding techniques for visualizing high-dimensional data. Most standard packages of t-SNE, such as scikit-learn, use the Barnes-Hut t-SNE (BH t-SNE) algorithm for large datasets. However, existing CPU implementations of this algorithm are inefficient. In this work, we accelerate the BH t-SNE on CPUs via cache optimizations, SIMD, parallelizing sequential steps, and improving parallelization of multithreaded steps. Our implementation (Acc-t-SNE) is up to 261x and 4x faster than scikit-learn and the state-of-the-art BH t-SNE implementation from daal4py, respectively, on a 32-core Intel(R) Icelake cloud instance.
translated by 谷歌翻译
We investigate a model for image/video quality assessment based on building a set of codevectors representing in a sense some basic properties of images, similar to well-known CORNIA model. We analyze the codebook building method and propose some modifications for it. Also the algorithm is investigated from the point of inference time reduction. Both natural and synthetic images are used for building codebooks and some analysis of synthetic images used for codebooks is provided. It is demonstrated the results on quality assessment may be improves with the use if synthetic images for codebook construction. We also demonstrate regimes of the algorithm in which real time execution on CPU is possible for sufficiently high correlations with mean opinion score (MOS). Various pooling strategies are considered as well as the problem of metric sensitivity to bitrate.
translated by 谷歌翻译
Online controlled experiments (A/B tests) have become the gold standard for learning the impact of new product features in technology companies. Randomization enables the inference of causality from an A/B test. The randomized assignment maps end users to experiment buckets and balances user characteristics between the groups. Therefore, experiments can attribute any outcome differences between the experiment groups to the product feature under experiment. Technology companies run A/B tests at scale -- hundreds if not thousands of A/B tests concurrently, each with millions of users. The large scale poses unique challenges to randomization. First, the randomized assignment must be fast since the experiment service receives hundreds of thousands of queries per second. Second, the variant assignments must be independent between experiments. Third, the assignment must be consistent when users revisit or an experiment enrolls more users. We present a novel assignment algorithm and statistical tests to validate the randomized assignments. Our results demonstrate that not only is this algorithm computationally fast but also satisfies the statistical requirements -- unbiased and independent.
translated by 谷歌翻译
Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision
translated by 谷歌翻译
Multi-agent path finding (MAPF) is a task of finding non-conflicting paths connecting agents' specified initial and goal positions in a shared environment. We focus on compilation-based solvers in which the MAPF problem is expressed in a different well established formalism such as mixed-integer linear programming (MILP), Boolean satisfiability (SAT), or constraint programming (CP). As the target solvers for these formalisms act as black-boxes it is challenging to integrate MAPF specific heuristics in the MAPF compilation-based solvers. We show in this work how the build a MAPF encoding for the target SAT solver in which domain specific heuristic knowledge is reflected. The heuristic knowledge is transferred to the SAT solver by selecting candidate paths for each agent and by constructing the encoding only for these candidate paths instead of constructing the encoding for all possible paths for an agent. The conducted experiments show that heuristically guided compilation outperforms the vanilla variants of the SAT-based MAPF solver.
translated by 谷歌翻译
The appearance of an object can be fleeting when it transforms. As eggs are broken or paper is torn, their color, shape and texture can change dramatically, preserving virtually nothing of the original except for the identity itself. Yet, this important phenomenon is largely absent from existing video object segmentation (VOS) benchmarks. In this work, we close the gap by collecting a new dataset for Video Object Segmentation under Transformations (VOST). It consists of more than 700 high-resolution videos, captured in diverse environments, which are 20 seconds long on average and densely labeled with instance masks. A careful, multi-step approach is adopted to ensure that these videos focus on complex object transformations, capturing their full temporal extent. We then extensively evaluate state-of-the-art VOS methods and make a number of important discoveries. In particular, we show that existing methods struggle when applied to this novel task and that their main limitation lies in over-reliance on static appearance cues. This motivates us to propose a few modifications for the top-performing baseline that improve its capabilities by better modeling spatio-temporal information. But more broadly, the hope is to stimulate discussion on learning more robust video object representations.
translated by 谷歌翻译
Unsupervised anomaly detection in time-series has been extensively investigated in the literature. Notwithstanding the relevance of this topic in numerous application fields, a complete and extensive evaluation of recent state-of-the-art techniques is still missing. Few efforts have been made to compare existing unsupervised time-series anomaly detection methods rigorously. However, only standard performance metrics, namely precision, recall, and F1-score are usually considered. Essential aspects for assessing their practical relevance are therefore neglected. This paper proposes an original and in-depth evaluation study of recent unsupervised anomaly detection techniques in time-series. Instead of relying solely on standard performance metrics, additional yet informative metrics and protocols are taken into account. In particular, (1) more elaborate performance metrics specifically tailored for time-series are used; (2) the model size and the model stability are studied; (3) an analysis of the tested approaches with respect to the anomaly type is provided; and (4) a clear and unique protocol is followed for all experiments. Overall, this extensive analysis aims to assess the maturity of state-of-the-art time-series anomaly detection, give insights regarding their applicability under real-world setups and provide to the community a more complete evaluation protocol.
translated by 谷歌翻译